by Hans Langenhagen Modellflugclub Rossendorf e.V. Germany



- Why work with young talents ?
- New opportunities in Germany School clubs
- Model building and Flight training
  - Indoor flying as training method
  - appropriate model designs
  - results of the training method
- Practical application of the teaching material in physics
  - movement patterns (steady motion, uniformly accelerated motion)
  - cruise flight and take-off process
  - efficiency of the drive system
- summary

- shortage of young members
  - exists in most clubs
  - is not only a cosmetic problem
- without young members in a club
  - there is the risk of ageing
  - it might get unguided
  - sooner or later it will fall appart

#### Analysis in 2000 $\rightarrow$ 2010:

• the former propaganda has lost its effectiveness: newspaper articles, homepage, club presentation events with model building at events (e.g. airport festival)



### A new attempt: Working groups in schools

- GanzTagsAngebot (GTA) = schooling
  - after three trial lessons: duty to visit the working group for a half year
  - presence control like in the classroom
  - short progress reports 4 times per school year
    - $\rightarrow$  best possibility for contact with students
- for example: Modellflug Club Rossendorf e.V.
  - program runs in a nearby located High School in Dresden since Sept 2009
  - at start: 2 students of the 5th grade participated
  - in present SY 2015/16: in total 16 students participate (4x5th, 6x6th, 3x8th,1x9th grade)
  - $\rightarrow$  from those participants: 5 became members of our club

#### Schooling-Program of the first years

Styropor glider  $\rightarrow$  Ba\_glider (Opitec)  $\rightarrow$  Free Flight model (Aeronaut)  $\rightarrow$  Motor glider



 training with the mot gliders on our flying field  $\rightarrow$  that did not work well

#### Schooling-Experients of the first years

- building program okay, but flight training did not worked out:
- on the GTA-day the weather was not always good
- a continuous training was not possible
- → low efficiency: only small progress in control quality during a long period of time:

## alternative: indoor flying as training method?



→ not a teaching in indoor aerobatics flight (F3P) !!
 A: flight training immediately after school lessons in gym
 D: limited flight space
 Q: indoor flying nevertheless a workable solution?

## alternative: indoor flying as training method?

- required attributes of the model
  - slow flying reaction time of the teacher !?
  - robust toward impacts on wall and on ground
  - docile controllable and comparable with motor glider flight properties
  - low costs in building, material also from do-it-your-self-market
- Realisation
  - airfoil curved surface like Gö417a: fmax = 6%, camax = 1 @Re=40000,  $\Lambda$ =  $\infty$
  - lightweight construction by using EPP and Styropor
  - no traction operation  $\rightarrow$  pusher configuration

## alternative: indoor flying as training method?

traction propulsion causes damages on prop or/and motor or model



 $\rightarrow$  the drive must be protected by using pusher propulsion!!

### slow speed – how to achieve? Estimation v<sub>min</sub>



## classifcation v<sub>min</sub> versus mass/A













#### suitable pusher propulsion configurations:

- inspired by the motor glider OGAR/CZ







A: prop and motor are protected, the hall's walls will spared; docile controllable;
D: mass = 220g m/A = 13,5g/dm2 ->v ≈ 6m/s too high!

#### suitable pusher propulsion configurations:

• bringing forward the motor behind the nose  $\rightarrow$  low wing monoplane



### geeignete pusher-Varianten:

• Reduction of m/A by enlargement the elevator's area ( $\rightarrow$ tandem-config)







A: mass = 120g m/A = 7g/dm2  $->v \approx 3,5m/s$  – better ! assembling very simple, modell still robust and docile controllable D: not found

### Is indoor flying usable for RCtraining?

Answer: YES! For example:

- 4 School-pupils took part at the end of the 5th grad in a model flyer camp
- after 2h practising time 3 of them were able to control motor gliders with span of 2 ... 3m
- also they could take part on the compet/electric class at the end of week



-> beginner training via Indoor flying is worth doing!! - Modellflugclub Rossendorf e.V. -

- model in flight are moved bodies
- take-off process:
  - uniformly accelerated motion
  - $v \neq const (increase)$
- cruising flight:
  - steady movement
  - v = const

- Cruising flight: v = const,
- measurement: time-acquisition over path marks with the help of pupils



 $\rightarrow$ Lift coefficient can be calculated

→ determination of coordinate point\_1 on polar curve

determination of operating point\_1 on the polar curve:

 $c_{a\_sl} = 0,94$ 

inclusion of further drag coefficients:

$$c_{w_sl} = c_{wp_sl} + \frac{c_{a_sl}^2}{2 \cdot \pi \cdot \Lambda} + c_{ws}$$
$$= 0,076$$

→we determined the operating point\_1

→the Drag force is:

$$F_{w_{sl}} = \frac{\rho}{2} \cdot v_{sl}^2 \cdot c_{w_{sl}} \cdot A$$

= 0,13N



- take-off process:  $v \neq const$ ,
- measurement of the accelerated phase over path marks with the help of pupils

measurement: t = f(s)

alculation: inverse funktion s = g(t)

find out the value "a" for acceleration:  $s(t) = \frac{a}{2} \cdot t^2$ 

 $\rightarrow$ interpolation trough the points



take-off process:  $v \neq const$ , calculation:



we get the thrust force in acceleration phase:  $Fs_b = m \cdot a$ 

with mass m = 0.17 kg Fs\_b = 0,4N

in comparison: static thrust Fs\_st = 0.8N

• take-off process in total: from  $v \neq const$  until v = const



• Cruising flight: v = const, meassurement fast flight:



- $\rightarrow$  Lift coefficient can be calculated
- → determination of coordinate point\_2 on polar curve

determination of operating point\_2 on the polar curve:

ca\_fa = 0,13

inclusion of further drag coefficients:

$$c_{w_fa} = c_{wp_fa} + c_{ws}$$
$$= 0.05$$

→we determined the operating point\_2

the Drag force is:

= 0,6N

$$F_{w_{-}fa} = \frac{\rho}{2} \cdot v_{fa}^{2} \cdot c_{w_{-}fa} \cdot A$$



determine efficiency factor of propulsion, example fast flight

power output of the airscrew :

$$P_{mech_fa} = v_{fa} \cdot F_{S_fa} = 6,5W$$

electrical input:

 $P_{el} = U_{acc} \cdot I_{acc} = 21 \text{W}$ 

→ efficiency factor of driving system: 
$$\eta_{ges_fa} = \frac{P_{mech_fa}}{P_{el_fa}} = 0.31$$

breakdown in individual components:

controllerelectric motorpropeller $\eta_{reg} = 0.95$  $\eta_{mot} = 0.85$  $\eta_{prop} = 0.4$ 

## Summary

On an example could be shown, that we model aircraft flyer have a good chance to recruit pupils for our club in cooperation with a school.

Indoor flying has been proven successful to learn remote control operating.

The cooperation allows the practical application of the teaching material in physics.