Rossendorfer Versuche –

Hans Langenhagen Haus der Luftsportjugend, März 2016

- Wozu Nachwuchsarbeit?
- Neue Möglichkeit Ganztagsangebot an Schulen
- Bau- und Schulungsprogramm
 - Indoorfliegen als Schulungsmethode
 - geeignete Modellvarianten
 - Schulungsergebnis
- Die Verbindung zur Schulphysik
 - Bewegungsformen (gleichförm, gleichmäßig beschl)
 - Horizontalgeschwindigkeit und Startvorgang
 - Wirkungsgrad des Antriebs
- Zusammenfassung

Nachwuchsmangel

- haben die meisten Vereine
- ist nicht nur ein "kosmetisches" Problem

Ohne Nachwuchs

- besteht Überalterungsgefahr
- kann eine Verein sogar "führungslos" werden

Beobachtung: 2000 → 2010:

 die Wirkung der bisherigen Werbung lässt nach, z.B. über Veröffentlichung in Zeitungen, home page, Auftritt zu Veranstaltungen mit "Fliegerbau" (1. Mai; Flughafenfest)

Neuer Versuch: GTA in Schule

- GanzTagsAngebot = Arbeitsgemeinschaften
 - nach Schnupper-Stunden: Pflichtteilnahme für 1/2Jahr
 - Teilnahmekontrolle wie Unterricht
 - Kurzberichte zu Bau/Steuerungsfortschritten → Schule
 - → beste Kontaktmöglichkeit zu Schülern!
- Beispiel mfcR
 - Angebot Modellflug in einem Dresdner Gymnasium
 - Teilnahme Start SJ. 09/10: 2 Schüler, 5.Klasse
 - gegenwärtig SJ 2015/16: 16 Schüler, 4x5., 6x6.Kl, 3x8Kl, 1x9.Kl
 - → 5 neue Schüler als Vereinsmitglieder

GTA-Programm der ersten Jahre

Styroporgleiter → Ba_Gleiter → Ba_Segler (Opitec) → Freiflugmodell (Aeronaut)

- mehrere Schüler bauen einen Motorsegler
 → funktionierte gut
- Lehrer-Schüler-Fliegen dann auf dem Flugplatz → funktionierte schlecht

⁻ Modellflugclub Rossendorf e.V. -

GTA-Erfahrung der ersten Jahre

Bauprogramm okay, Flugtraining aber nur mit Hindernissen möglich:

- Wetter am GTA-Tag nicht immer passfähig
- Vereinsflugplatz nicht mit dem Bus erreichbar … !?
- → nur geringes Nutzen/Aufwands-Verhältnis

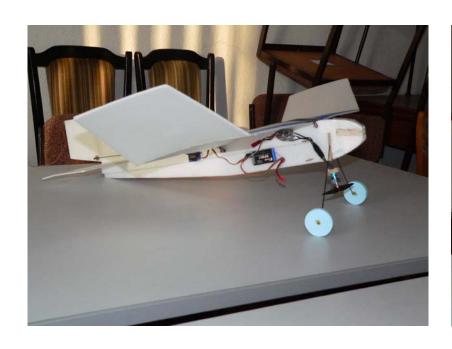
Ausweg: Indoorfliegen als Schulungsmethode?

V: Flugtraining gleich in der Schule

N: begrenzter Flugraum

F: Indoorfliegen trotzdem brauchbar für's Fernlenktraining?

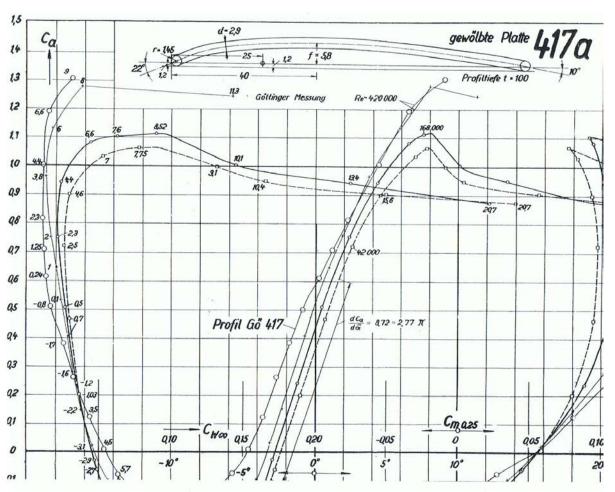
Ausweg: Indoorfliegen als Schulungsmethode?


- Forderung an das Modell
 - langsam fliegend → Reaktionszeiten des Lehrers!
 - robust gegen Wandanschläge und Bodenaufprall
 - gutmütig steuerbar, aber vergleichbar zu MS-Verhalten
 - preiswert, möglichst Baumarkt- Material

Realisierung

- Profil gewölbte Platte, camax = 1 @Re=40000, Λ = ∞ Leichtbau durch EPP und Styropor-Flügel
- Traktionsantrieb ungeeignet → pusher-Konfiguration
- EPP_Bug, Versteifung im Rumpf

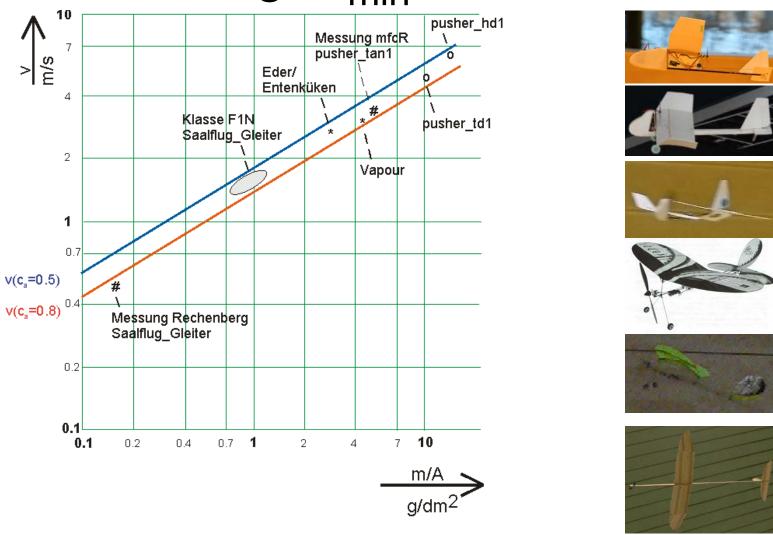
Ausweg: Indoorfliegen als Schulungsmethode?


Traktionsantrieb ungeeignet → verursacht Propeller- oder Motorschaden

→ Antrieb muss geschützt werden! -> pusher_Konfig!

Wie schätzt man vmin ab?

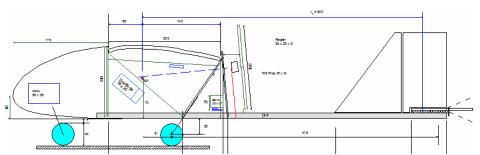
brauchbar runter bis Re = 42000;

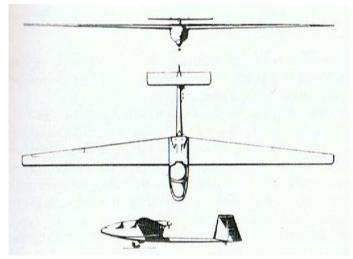

Re = $l\mu^*v^*70$ = 200mm*5m/s*70 = 70000 > 42000

$$vmin = \sqrt{\frac{\frac{mass \cdot g}{\rho}}{\frac{\rho}{2} \cdot AF \cdot camax}}$$

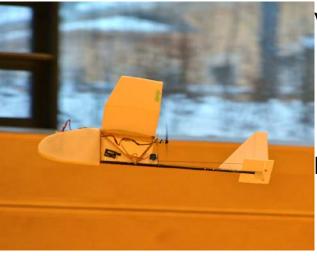
Camax = 0,8; m = 170gr; AF = 16,4qdm

 \rightarrow vmin = 4,5m/s

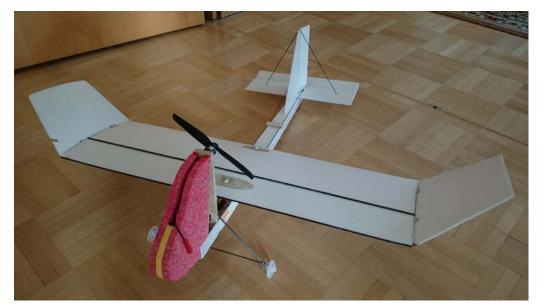

Einordnung: v_{min} versus m/A

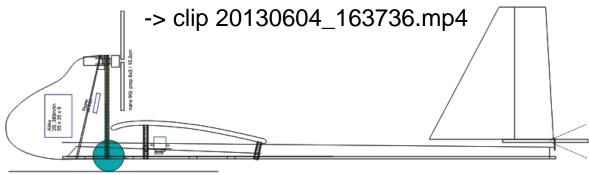


- Modellflugclub Rossendorf e.V. -


geeignete pusher-Varainten:

Anleihe bei OGAR




V: Motor und Prop bleiben ganz, Hallenwände werden geschont, gutmütig steuerbar;

N: mass = 220g m/A = 13,5g/dm2 ->v ≈ 6m/s zu hoch!

geeignete pusher-Varianten:

Vorverlegung des Antriebs hinter Bug führt zum Tiefdecker

- Modellflugclub Rossendorf e.V. -



V: m = 170g m/A = 10,6g/dm2 ->v ≈ 4,2m/s gut! Aufbau sehr einfach, Modell trotzdem robust N: keiner erkennbar

geeignete pusher-Varianten:

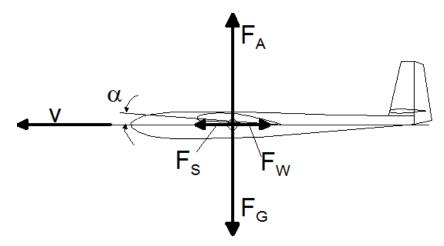
Flächenbelastung weiter verkleinert durch Tandem-Kofiguration

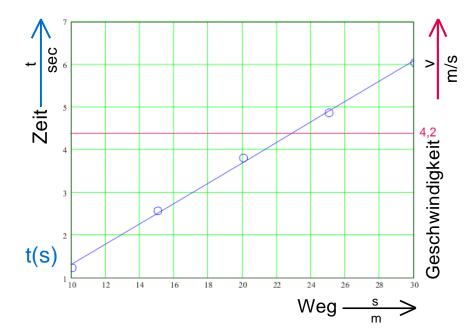
V: mass = 120g m/A = 7g/dm2 ->v ≈ 3,5m/s - besser! Aufbau sehr einfach, Modell trotzdem robust N: keiner erkennbar

ist Indoorfliegen brauchbar für's Fernlenktraining?

Antwort: JA! Beweis:

Drei Schüler der 5. Klasse nahmen im SJ 2012_13 an unserem GTA Modellflug teil, fuhren in den Sommerferien Juli 13 mit nach Steutz und konnten nach 2 Tagen Umschulung auf Motorsegler diese, aber auch HLG_Modelle zum Wettbewerb steuern!




-> Anfängerschulung über Indoorfliegen lohnt sich!!

- Modellflugclub Rossendorf e.V. -

- Flugmodelle sind bewegte Körper
- Startvorgang:
 - gleichmäßig beschleunigte Bewegung
 - v ≠ const (nimmt zu)
- Reiseflug:
 - gleichförmige Bewegung
 - v = const

Reiseflug: v = const, Messung Reiseflug:

mit v_sl=4,2m/sec:

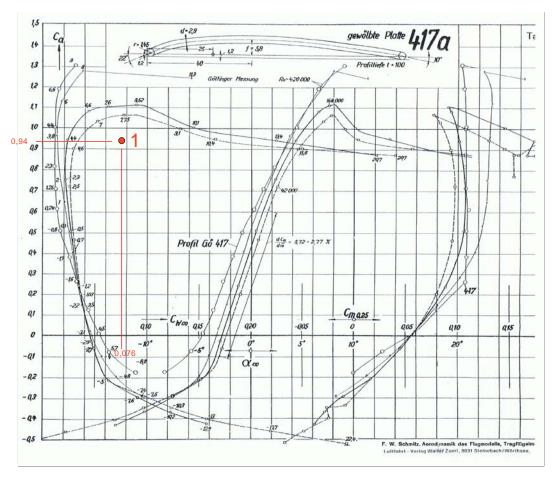
$$c_{a_sl} = \frac{2 \cdot m \cdot g}{\left(v_{_sl}\right)^2 \cdot A_F \cdot \rho} = 0.94$$

→ Auftriebsbeiwert kann berechnet werden → Arbeitspunkt 1 auf Polare

Arbeitspunkt 1 auf Polare für Gesamtmodell finden:

$$c_{a sl} = 0.94$$

Unter Einbeziehung weiter Widerstandsbeiwerte:

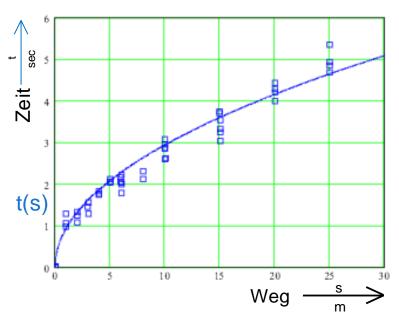

$$c_{w_{-}sl} = c_{wp_{-}sl} + \frac{c_{a_{-}sl}^{2}}{2 \cdot \pi \cdot \Lambda} + c_{ws}$$

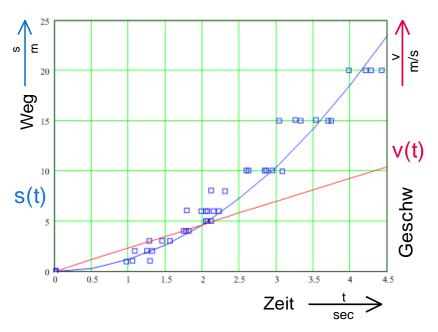
$$= 0.076$$

→ Pkt 1 im Polarenfeld gefunden

Widerstandskraft:

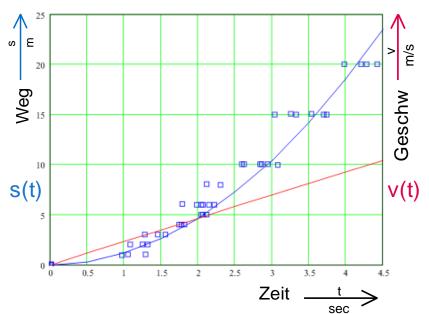
$$F_{w_{-}sl} = \frac{\rho}{2} \cdot v_{sl}^{2} \cdot c_{w_{-}sl} \cdot A$$
$$= 0.13N$$


Startvorgang: v ≠ const, Messung Beschleunigungsphase:


Messung: t = f(s)

Rechnung: Umkehrfunktion s = g(t)

Wert für die Beschleunigung a finden: $s(t) = \frac{a}{2} \cdot t^2$ \rightarrow Interpolation durch Messpunkte



- Modellflugclub Rossendorf e.V. -

Startvorgang: v ≠ const, Messung:

Interpolation ergibt für Beschleunigungswert a in $s(t) = \frac{a}{2} \cdot t^2$ $a = 2.3 \cdot \frac{m}{s^2}$

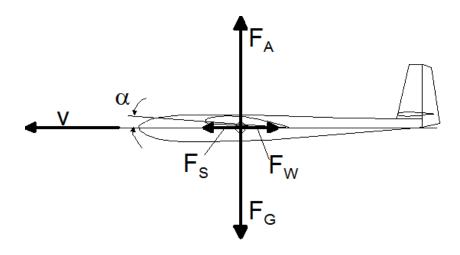
damit Schubkraft in

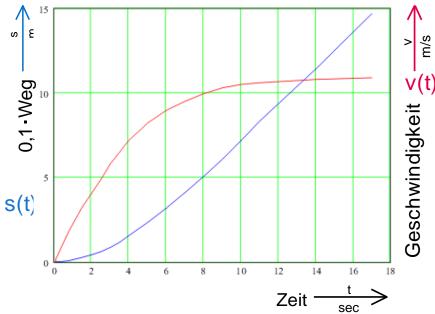
Beschleunigungsphase: $Fs_b = m \cdot a$

mit Masse $m = 0.17 \cdot kg$ $Fs_b = 0.4N$

zum Vergleich:

Standschub $Fs_st = 0.8N$


Startvorgang: v ≠ const bis v = const


Rechnung: Lösung DGL= g(t) Messung: t = f(s)Weg 0,1-Weg Geschwindigkeit Seschw t(s) s(t) 10 14 Zeit

Startvorgang in den ersten Sekunden

Startvorgang bis v = const ab $t \ge 12sec$

Reiseflug: v = const, Messung Schnellflug:

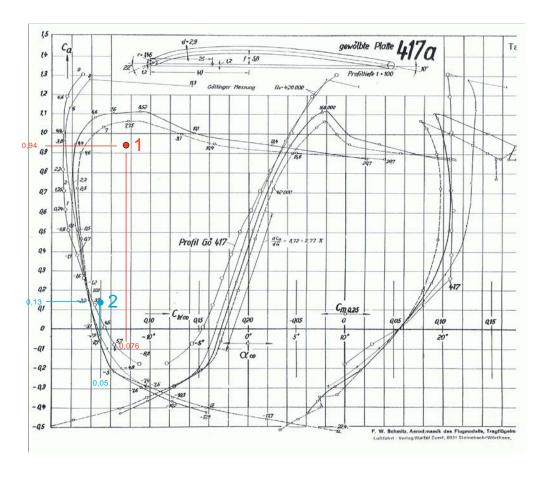
mit v_fa=11m/sec:

$$c_{a_{-}fa} = \frac{2 \cdot m \cdot g}{\left(v_{-}fa\right)^{2} \cdot A_{F} \cdot \rho} = 0.13$$

→ Auftriebsbeiwert kann berechnet werden → Arbeitspunkt 2 auf Polare

Arbeitspunkt 2 auf Polare für Gesamtmodell finden:

$$ca_fa = 0, 13$$


unter Einbeziehung weiter Widerstandsbeiwerte:

$$c_{w_{-}fa} = c_{wp_{-}fa} + c_{ws}$$
$$= 0.05$$

→ Pkt 2 im Polarenfeld gefunden

Widerstandskraft:

$$F_{w_{-}fa} = \frac{\rho}{2} \cdot v_{fa}^{2} \cdot c_{w_{-}fa} \cdot A$$
$$= 0.6N$$

Wirkungsgrad des Antriebs bestimmen, Beispiel Schnellflug

Der Propeller gibt die mechanische Leistung ab:

$$P_{mech_fa} = v_{fa} \cdot F_{S_fa} = 6.5W$$

Die elektrische Eingangsleistung ist

$$P_{el} = U_{acc} \cdot I_{acc} = 21 \text{W}$$

→ Wirkungsgrad:

$$\eta_{ges_fa} = \frac{P_{mech_fa}}{P_{el fa}} = 0.31$$

mögliche Zuordnung zu Einzelkomponenten:

$$\eta_{reg} = 0.95$$
 $\eta_{mot} = 0.85$ $\eta_{prop} = 0.4$

$$\eta_{mot} = 0.85$$

$$\eta_{prop} = 0.4$$

Zusammenfassung

- Unserer Erfahrungen zeigen, dass sich durch Kooperation mit einer Schule die Chancen für die Nachwuchsgewinnung verbessern.
- Das Indoorfliegen hat sich als erfolgreich für das Erlernen der Steuerungstechnik von Flugmodellen erwiesen.
- Die Kooperation erlaubt die Verbindung von praktischem Fliegen zur Schulphysik.